A Reinterpretation of the Anisotropy in the Magnetic Susceptibility of VO(acac)₂

P. B. LUKINS

Department of Physical Chemistry, University of Sydney, N.S.W. 2006, Australia

and P. J. STILES

School of Chemistry, Macquarie University, North Ryde, N.S.W. 2113, Australia

Received September 3, 1979

Bis(pentan-2,4-dionato) $\infty \alpha andium(IV)$, VO-(acac)₂, is a relatively stable d¹ complex that has attracted extensive spectroscopic [1], magnetic [2-4] and magneto-optical [5] studies. Although assignments of the u.v.-visible spectrum are still not settled [1] there seems to be a consensus favouring the Ballhausen-Gray [6] ordering of the metal ion d states over a clustering of d-levels proposed by Selbin and co-workers [7, 8].

Information concerning the ordering of the d states can, in principle [9], be obtained by analysing the temperature independent (ti) part, $\Delta \chi^{ti}$, of the anisotropy

$$\Delta \chi = \chi_{zz} - 1/2(\chi_{xx} + \chi_{yy})$$

in the magnetic susceptibility. Mitra [10] recently analysed the observed temperature dependences [4] of the magnetic susceptibilities parallel and perpendicular to the vanadyl axis (z) and has found $\Delta \chi^{ti}$ to be negative. He interpreted $\Delta \chi^{ti}$ as the anisotropy, $\Delta \chi^{tip}_{dd}$, in the temperature independent paramagnetism associated with d-d transitions and discussed the ordering of d states on this basis. Here we present theoretical evidence indicating that $\Delta \chi^{tip}_{dd}$ is, in fact, positive and that the negative experimental value of $\Delta \chi^{ti}$ stems mainly from additional contributions not associated with the unpaired electron. The uv-visible spectrum of the crystal exhibits absorption bands in the vicinity of 15,000, 17,000 and 25,000 cm⁻¹ [1]. According to the Ballhausen-Gray assignment [6] these represent d-d transitions from the C_{4v} ground state $b_2(d_{xy})$ to the $e(d_{xz}, d_{yz})$, $b_1(d_{x^2-y^2})$ and $a_1(d_{z^2})$ excited states, respectively. The crystal field parameters Dq, Ds and Dt appropriate to C_{4v} symmetry [11] and to the Ballhausen-Gray assignments have been listed [12] and typical values are given below

 $Dq \simeq 1700 \text{ cm}^{-1}$, $Ds \simeq -3400 \text{ cm}^{-1}$, $Dt \simeq 900 \text{ cm}^{-1}$

Selbin's cluster scheme [7, 8] on the other hand, attributes the band at highest frequency to chargetransfer and/or spin-forbidden transitions. It also permits the $b_1(d_{x^2-y^2})$ state to lie below the $e(d_{xz}, d_{yz})$ states which are split by spin-orbit coupling. From assignments of reflectance spectra published by Selbin and coworkers [8] we obtain the crystal field parameters

 $Dq \simeq 1500 \text{ cm}^{-1}$, $Ds \simeq -2840 \text{ cm}^{-1}$, $Dt \simeq 1210 \text{ cm}^{-1}$

Symmetry labels and orbital designations adopted here are favoured by inorganic chemists [4, 6, 8, 10] but do not conform with standard spectroscopic practice [1].

Employing these parameters in conjunction with a spin-orbit coupling constant of 150 cm^{-1} [6, 13] we have used crystal field theory [9] to compute magnetic properties of the complex. Calculations were performed using both the {l s m₁ m_s} and the {l s j m_j} basis sets with l = 2, s = 1/2 and j = 3/2, 5/2. Eigenvalues and eigenfunctions of the isolated complex were computed from the matrix of the effective hamiltonian (including both crystal field and spin-orbit terms) of the d electron. Quantum mechanical perturbation theory leads directly to theoretical g-valves and paramagnetic susceptibilities of the complex [9, 14].

Table I summarizes our calculations of g-values and of the temperature independent component,

TABLE 1. A Comparison of Theoretical with Experimental g-values and Susceptibility Anisotropies.^a

Quantity	Estimate from Ballhausen–Gray crystal field ^b	Estimate from Selbin crystal field ^b	Experimental values
g	1.93	1.90	1.93°, 1.943 ^d , 1.943 ^e
g1	1.98	1.98	1.99 ^c , 1.982 ^d , 1.983 ^e
$10^6 \Delta \chi_{dd}^{tip}$	+87	+146	
$10^{6} \Delta \chi^{p} (300 \text{ K})$	+25	+44	
$10^{6} \Delta_{\rm X} (300 \text{ K})$	-35 ^f	-16 ^f	- 76 °

^a In units of cm³ mol⁻¹. ^bWith a spin-orbit coupling of 150 cm⁻¹. ^cReference [4]. ^dReference [3]. ^eReference [2]. ^fAssumes 10⁶ $\Delta \chi$ ([VO(acac)₂]⁺) \simeq -60.

 $\Delta \chi_{dd}^{tb}$, of the paramagnetic anisotropy, $\Delta \chi^{p}$, associated with the d electron. The anisotropy, $\Delta \chi^{p}$, is the sum [14] of $\Delta \chi_{ddp}^{tb}$ and a first order Zeeman term directly proportional to $g_{\parallel}^{2} - g_{\perp}^{2}$ and inversely proportional to the temperature.

Our calculations show that neither the Ballhausen– Gray nor the Selbin crystal field parameters support Mitra's assumption that $\Delta \chi_{dd}^{tip}$ is negative. The negative sign of the experimental quantity $\Delta \chi^{ti}$ can be reconciled with the positive sign of $\Delta \chi_{dd}^{tip}$ if we suppose that Mitra has neglected contributions from the closed shell skeleton of the complex and that this contribution dominates the temperature independent component of the magnetic anisotropy.

Compilations [15] of magnetic anisotropies of closed shell molecules containing fragments similar to those in VO(acac)₂ suggest that the hypothetical complex ion [VO(acac)₂]⁺, formed by removing the d electron while retaining the equilibrium nuclear geometry of the parent species, has a magnetic anisotropy of about -60×10^{-6} cm³ mol⁻¹. If the d-electron diamagnetism [14] and certain charge-transfer terms are neglected we can write the experimental quantity, $\Delta \chi^{ti}$, as

$$\Delta \chi^{t_1} = \Delta \chi^{t_1p}_{dd} + \Delta \chi ([VO(acac)_2]^*)$$

Corrections similar to the second term in this equation are commonly applied for ligands such as phthalocyanine [16] with particularly large susceptibility anisotropies but the hazardous consequences of neglecting more moderate skeletal anisotropies in molecules, such as VO(acac)₂, with small paramagnetic anisotropies should also be recognised. The value of $\Delta \chi^{ti}$ extracted from data in reference [4] is close to -25×10^{-6} cm³ mol⁻¹. This value, in conjunction with a skeletal anisotropy of -60×10^{-6} cm³ mol⁻¹, suggests that covalency and vibronic couplings neglected in Van Vleck's crystal field model might substantially reduce the values for $\Delta \chi_{dd}^{tip}$ reported in the table but that their positive signs are still appropriate. Finally, we note the unexpectedly large discrepancy between the directly measured value of -0.235 for $g_{\parallel}^2 - g_{\perp}^2$ reported by Gregson and Mitra [4] and a value close to -0.081 for the same quantity extracted from an analysis of the temperature dependence of their susceptibilities.

We conclude that the Ballhausen-Gray crystal field parameters lead to better g-components and

susceptibility anisotropies than the corresponding parameters based on Selbin's spectral assignments. The magnitude but not the sign of $\Delta \chi_{dd}^{tdp}$ is sensitive to the ordering of the $b_1(d_{x^2-y^2})$ and $e(d_{xz}, d_{yz})$ states for both cases reported in Table I and for several others that we have considered. In the absence of reliable estimates of skeletal anisotropy, susceptibility measurements provide little quantitative information about the d states not already available from g-anisotropy. The contention [4] that the Ballhausen-Gray and Selbin spectral assignments lead to opposite signs for the anisotropy in the magnetic susceptibility is not supported by our analysis.

Acknowledgement

We thank Drs. R. L. Calvert and G. L. D. Ritchie for helpful discussions.

References

- 1 M. H. Valek, W. A. Yeranos, G. Basu, P. K. Hon and R. L. Belford, J. Mol. Spect., 37, 228 (1971); and references therein.
- 2 R. Wilson and D. Kivelson, J. Chem. Phys., 44, 154 (1966).
- 3 P. G. James and G. R. Luckhurst, Mol Phys., 19, 489 (1970).
- 4 A. K. Gregson and S. Mitra, J. Chem. Soc. Dalton, 1098 (1973).
- 5 R. L. Calvert, P. B. Lukins and G. L. D. Ritchie, unpublished data on Cotton-Mouton and Kerr effects.
- 6 C. J. Ballhausen and H. B. Gray, *Inorg. Chem.*, 1, 111 (1962).
- 7 T. R. Ortolano, J. Selbin and S. P. McGlynn, J. Chem. Phys., 41, 262 (1964).
- 8 J. Selbin, G. Maus and D. L. Johnson, J. Inorg. Nucl. Chem., 29, 1735 (1967).
- 9 J. H. Van Vleck, Disc. Faraday Soc., 26, 96 (1958).
- 10 S. Mitra, in *Progress in Inorganic Chemistry* (Edited by S. J. Lippard), Vol. 22, p. 355. Wiley-Interscience, New York, 1977.
- 11 A. D. Liehr, J. Phys. Chem., 64, 43 (1960).
- 12 J. Selbin and T. R. Ortolano, J. Inorg. Nucl. Chem., 26, 37 (1963).
- 13 D. Kivelson and S. Lee, J. Chem. Phys., 41, 1896 (1964).
- 14 J. H. Van Vleck, 'The Theory of Electric and Magnetic Susceptibilities', Oxford University Press (1932).
- 15 W. H. Flygare, Chem. Rev., 74, 653 (1974).
- 16 A. K. Gregson, R. L. Martin and S. Mitra, J. Chem. Soc. Dalton, 1458 (1976).